
EPICS – Kafka Forwarder
By

Anuj Mittal
Tata Institute of Fundamental Research, Hyderabad

EPAC Data Management and Data Acquisition
• Data volumes of up to 5GB/s and multiple PB over a year.

• Both operational and experimental data from multiple detectors.

• Data Acquisition Requirements:
o Interfacing with control systems (EPICS).

oData will have attached metadata.

• Existing EPICS DAQ solutions (eg. EPICS Archiver Appliance) proved to be
inadequate for the use case, so the idea was to use a central data broker, in
this case, Apache Kafka.

Data Acquisition Initial Stage

...

Monitoring and Serialization
• ADKafka (Images)
• EPAC Forwarder (Scalars and Waveforms)

Further Use
Monitoring

and
Serialisation

EPICS Archiver

Kafka

Prior Implementations
• We expand on work done by the European Spallation Source (ESS).

o Schemas

oPlugins

o Forwarder

• Already in use at ISIS and other facilities.

• https://github.com/ess-dmsc

Why Kafka?

Each topic represents
one data source Producers add data to

the end

Data may have
metadata attached

Consumers can read
data from anywhere

Data Data Data Data Data Data Data

Data Data Data Data Data Data Data

Data Data Data Data Data Data Data

Data Data Data Data Data Data Data

• Real-time data at scale.
• High-throughput, fault-tolerant messaging.
• Producers and consumers work independently.
• Complex data types.

Data Serialisation
• No standard – Kafka can handle any bytes.

• We follow the lead of ESS and use FlatBuffers:
o Fast.

oMemory-Efficient.

oDefined schemas and strong typing.

o Schema can be evolved.

.fbs file
(schema

definition)

flatc

.java .py
.go

.rs
.c

Data Types

Image

Waveform

Scalar

13.52 J

Data schemas
• ESS has many different schemas

• f142 for scalars and ADAr for images .

• Our own (wa00) for waveforms: combination of two arrays from two
different PVs .

f1 4 2

Scalar data

Metadata

wa0 0

X data

Metadata

Y data

ADAr

NDAttributes

Metadata

Image data

Data Schema Example - wa00

EPICS-Kafka interface: Scalar and Forwarder

• ESS has a Forwarder.
oMonitors PV.

oProduces Kafka message when PV updates.

• Challenges:
oNot enough metadata (eg. EGU).

oNo support for custom metadata.

Scalar

13.52 J

ESS Forwarder

The challenge with Waveforms: Forwarder

• Waveforms are a combination of two arrays from two different PVs.

• ESS Forwarder Challenges:
o Large codebase

oComplex to integrate 2 PV based waveform.

• Custom EPAC Forwarder was built.
o Smaller python codebase < 400 lines.

o Static configuration file.

oHandles both Scalars and Waveforms.

EPAC Forwarder

Waveform

EPICS-Kafka interface: Images and ADKafka

• Images are handled in NDArrays.
o NDAttributes as metadata.

• ADKafka plugin by ESS.
oPlugin for AreaDetector.

o Serialises via the ADAr FlatBuffer to send to Kafka. Image

ADKafka

Forwarder Summary
• The forwarder:

oMonitors PVs based on user provided configuration.

o Takes relevant data and serialises it based on flatbuffer schema.

oProduces the serialised data as a Kafka message.

Forwarder

camonitor
event

flatbuffers
message

Future Work
• f142 schema does not include units as a metadata quantity.

• Creating a unified schema.

• Moving from channel access to PV Access.

• Shifting from ADKafka to Forwarder for images.

Thank you for listening!

	Default Section
	Slide 1
	Slide 2: EPAC Data Management and Data Acquisition
	Slide 3: Data Acquisition Initial Stage
	Slide 4: Prior Implementations
	Slide 5: Why Kafka?
	Slide 6: Data Serialisation
	Slide 7: Data Types
	Slide 8: Data schemas
	Slide 9: Data Schema Example - wa00
	Slide 10: EPICS-Kafka interface: Scalar and Forwarder
	Slide 11: The challenge with Waveforms: Forwarder
	Slide 12: EPICS-Kafka interface: Images and ADKafka
	Slide 13: Forwarder Summary
	Slide 14: Future Work
	Slide 15: Thank you for listening!

