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EPAC Data Management and Data Acquisition
• Data volumes of up to 5GB/s and multiple PB over a year.

• Both operational and experimental data from multiple detectors.

• Data Acquisition Requirements:
o Interfacing with control systems (EPICS).

oData will have attached metadata.

• Existing EPICS DAQ solutions (eg. EPICS Archiver Appliance) proved to be 
inadequate for the use case, so the idea was to use a central data broker, in 
this case, Apache Kafka.



Data Acquisition Initial Stage

...

Monitoring and Serialization
• ADKafka (Images)
• EPAC Forwarder (Scalars and Waveforms)
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Prior Implementations
• We expand on work done by the European Spallation Source (ESS).

o Schemas

oPlugins

o Forwarder

• Already in use at ISIS and other facilities.

• https://github.com/ess-dmsc



Why Kafka?

Each topic represents 
one data source Producers add data to 

the end

Data may have 
metadata attached

Consumers can read 
data from anywhere
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• Real-time data  at scale. 
• High-throughput, fault-tolerant messaging. 
• Producers and consumers work independently. 
• Complex data types.



Data Serialisation 
• No standard – Kafka can handle any bytes.

• We follow the lead of ESS and use FlatBuffers: 
o Fast.

oMemory-Efficient.

oDefined schemas and strong typing. 

o Schema can be evolved.
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Data schemas
• ESS has many different schemas 

• f142 for scalars and ADAr for images .

• Our own (wa00) for waveforms: combination of two arrays from two 
different PVs .
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Data Schema Example - wa00



EPICS-Kafka interface: Scalar and Forwarder

• ESS has a Forwarder.
oMonitors PV.

oProduces Kafka message when PV updates.

• Challenges:
oNot enough metadata (eg. EGU).

oNo support for custom metadata.
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The challenge with Waveforms: Forwarder

• Waveforms are a combination of two arrays from two different PVs. 

• ESS Forwarder Challenges:
o Large codebase

oComplex to integrate 2 PV based waveform.

• Custom EPAC Forwarder was built.
o Smaller python codebase < 400 lines.

o Static configuration file.

oHandles both Scalars and Waveforms.

EPAC Forwarder

Waveform



EPICS-Kafka interface: Images and ADKafka

• Images are handled in NDArrays.
o NDAttributes as metadata. 

•  ADKafka plugin by ESS.
oPlugin for AreaDetector.

o Serialises via the ADAr FlatBuffer to send to Kafka. Image

ADKafka



Forwarder Summary
• The forwarder:

oMonitors PVs based on user provided configuration.

o Takes relevant data and serialises it based on flatbuffer schema.

oProduces the serialised data as a Kafka message.
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Future Work
• f142 schema does not include units as a metadata quantity.

• Creating a unified schema.

• Moving from channel access to PV Access.

• Shifting from ADKafka to Forwarder for images.



Thank you for listening!
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