

Integration of EPICS with COTS Controllers

HITESH DHOLA | POWER SUPPLY GROUP | ITER-INDIA | IPR

hitesh.dhola@iterindia.in

High Voltage Power Supplies for Plasma Heating System

System	Power /	HVPS /	Power Supply
	Source	Source	ratings
Ion Cyclotron Heating	8 + 1	2 HVPS per 1	14kV 20A
	(2.5MW)	Cyclotron	28kV 190A
Gyrotron for Electron	24 + 2	1 HVPS per 2	55kV 100A
Cyclotron Heating	(1MW)	Gyrotron	
Lower Hybrid	48 (0.6MW)	1 HVPS per 4 Klystron	~ 80kV 80A
Neutral Beam	32 (1.7MW)	1 HPVS per 1 NB	100kV 75A

Ion Cyclotron HVPS

Ion Cyclotron Heating	8 + 1	2 HVPS per 1	14kV 20A
	(2.5MW)	Cyclotron	28kV 190A

Installed at IPR, India

Neutral Beam HVPS

Neutral Beam	32	1 HPVS per 1	100kV 75A
	(1.7MW)	NB	

Installed at IPR, India

Neutral Beam HVPS at RFX, Italy

Neutral Beam	32	1 HPVS per 1	100kV 75A
	(1.7MW)	NB	

Installed at RFX, Italy

User Interface

User Interface

Controller

Requirements :

- Fullfill Prime objective
- Performance requirements
- COTS
- Reasonable length of Software Development Cycle
- Good Life Cycle for Hardware
- Technical Support Available

PXI Based Controller : Highly Modular Controller Runs on Real time operating system: Performance Developed in LabVIEW : Support and Development cycle

Adding Support for other Platform

Power supply with various specification for different application.

HVPS has users from various fields

- Windows
- Linux

Addressing User interface on Linux Platform

- Without changing current proven architecture
- Minimum changes

Exposing System to public functionalities

LabVIEW Shared Variable Engine deployed on the both side of the system

Simple TCP IP Protocol to monitor slow data

EPICS IOC Server utilises Channel Access protocol to transfer data

Design Requirements

Should support Both windows and Linux clients at same time

May support multiple monitoring panels

- No IOC running on client
- May be used with any EPICS Third party client
- Minimum or No coding on Client

1. Shared Memory

PXI Controller Runs two Operating systems, sharing memory

- Linux/Windows
- RT

RT Part acquires data and shares it

Windows/Linux Part handles EPICS IOCs

Performance issues Requires extra License Not well established : Bugs

2. Windows + RT

- Local User Interface
- Controller windows based
- Run EPICS server on Windows

Windows Dependency Not single Point interface

3. EPICS Server on RT

Latest version of LabVIEW implemented EPICS Server on Real-time

EPICS server embedded in coding of RT controller

single Point interface High Performance

Tested data format

- 1. Unsigned integer 8, 16, 32bit
- 2. Signed integer 8, 16,32 bit
- 3. Floating point 32bit
- 4. Array of all these format
- 5. string

Demonstration of Cross Platform data + alarm

Implementation

Location of EPICS server

Pros

- Totally Head Less, No dependency
- No need to provide user console, Saves costs.

Cons

- Supporting code at RTC, thus difficult to update without compromising performance
- On site Changes difficult so user inputs cannot be integrated at last stage

Location of EPICS server

LabVIEW Remote EPICS HMT HMI HMT User Interface is based on windows LabVIEW Easy to modify and Update Engine Server RTC code is undisturbed Late user inputs can be integrated RTC Can be distributed independent Real time control Different functionality at FPGA different user interface can be supported HVPS

Cons

Pros:

•

•

•

٠

• Extra cost, More space

Final Interface on Italian Site

Publication

Parion Engineering and Design 123 (2017) 737-742.

Integration of EPICS based monitoring for ion cyclotron high voltage power supply

H. Dhola^*, D. Pandya^b, R. Dave*, A. Thakar*, A. Patel*, N.P. Singh*, U.K. Baruah*

IREE-Index, Institute for Hanna Research, Gaudeinagar, India
IDMP ITE, Gaudhinagar, India

ARTICLE INFO

Article history: Beceived 3 October 2016 Beceived in serviced form 16 May 2017 Accepted 16 May 2017 Available online 29 May 2017

Keywords:

E [ion cpcloitmi] EC (electron cyclotron) MOS (neuron bown) HMOS (high voltage power supply) EC-HTMS (ion cyclotron high voltage power supply) ET (could time) EPICS (experimental physics and industrial control systema) HMI (human stacking interface) III (see interface) HMI (human stacking interface) III (see interface) HMI (burnas matching interfac

ABSTEACT

A Dual output [27]W & 15]WJ, 3 MW Ion Cyclotron High Voltage Power Supply [RC-HVPS] has been installed and integrated with a Diacrodic based RF source to be used for ICRF [Ion Cyclotron RF] system. The IC-HVPS Controller is based on LabVEW Keal-time PDI controller, which supports all control and monitoring operations of the PSM based power supply. The controller supports all essential features like, fast dynamics, low ripple and protection for source and loads.

EPICS [Experimental Physics and Industrial Control Systems] is an open source software widely accepted in scientific communication] for ITER. However interface with LabVEW RT systems is not fully matter yet.

Evolving interface requirements of platform like EPICS with IC-HVPS control has been assessed and implemented for monitoring purpose. A test case was implemented to identify compatibility, feasibility, consistency and performance of EPICS server with hyper Output Controller (IOCs) implemented in Realtime controller. This paper discusses integration of EPICS IOCs and LabVIEW based Real-time Controller along with an analysis on limitation imposed by such integration.

© 2017 Elsevier B.V. All rights reserved.

Now published

Documentation was updated for EPICS on windows after my successful testing. You can Get it here,

<u>https://docs.epics-controls.org/en/latest/getting-started/installation-</u> <u>windows.html</u>

If you have any questions on it, please feel free to mail me

Hitesh.dhola@iterindia.in

Other options: CA Lab

http://www-csr.bessy.de/control/SoftDist/CA_Lab/

Other Option : NetShrVar

An EPICS support module to access National Instruments Network Shared Variables and expose them as EPICS process variables. The module can be run on either Windows or Linux operating systems.

Other Option : IvDCOM

An EPICS support module to access items on the front panel of the National Instruments LabVIEW software package and expose them as EPICS process variables. It uses Microsoft Windows DCOM technology and thus both the EPICS IOC and LabVIEW software must be running on Microsoft Windows

https://github.com/ISISComputingGroup/EPICS-lvDCOM

Other Option : NetStreams

An EPICS support module for interfacing with National Instruments Network Streams using the LabWindows/CVI library. The module can only be used on Windows.

TCP/IP based : In Progress

The system consists of two components: the Local Control Unit (LCU) and the ICHVPS main controller (ECC). Communication between these components is facilitated over Ethernet using the ZeroMQ publish/subscribe pattern

http://wiki.zeromq.org

References

- 1. Integration of EPICS based monitoring for ion cyclotron high voltage power supply, Fusion Engineering and Design, Volume 123, November 2017, Pages 737-742
- 2. Quick Chart: Industrial Communications , http://www.ni.com/white-paper/52958/en/
- 3. CA Watcher, http://www-csr.bessy.de/control/SoftDist/CA_Watcher/
- 4. Control System Studio, https://ics-web.sns.ornl.gov/css/
- 5. How LabVIEW Uses I/O Servers, http://www.ni.com/white-paper/13865/en/
- 6. Introduction to EPICS, http://www.ni.com/white-paper/14144/en/
- 7. How LabVIEW Uses I/O Servers , http://www.ni.com/white-paper/13865/en/
- 8. Interactively Configuring EPICS I/O Servers , http://www.ni.com/white-paper/14149/en/
- 9. Using EPICS Server I/O Servers , http://zone.ni.com/reference/en-XX/help/370622M-01/lvmve/using_epics_s_serv/

Thank you